A Scaled Gradient Projection Method for Constrained Image Deblurring

نویسندگان

  • S Bonettini
  • R Zanella
  • L Zanni
چکیده

A class of scaled gradient projection methods for optimization problems with simple constraints is considered. These iterative algorithms can be useful in variational approaches to image deblurring that lead to minimize convex nonlinear functions subject to nonnegativity constraints and, in some cases, to an additional flux conservation constraint. A special gradient projection method is introduced that exploits effective scaling strategies and steplength updating rules, appropriately designed for improving the convergence rate. We give convergence results for this scheme and we evaluate its effectiveness by means of an extensive computational study on the minimization problems arising from the maximum likelihood approach to image deblurring. Comparisons with the standard expectation maximization algorithm and with other iterative regularization schemes are also reported to show the computational gain provided by the proposed method. AMS classification scheme numbers: 65K10, 65F22, 68U10 Submitted to: Inverse Problems

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative regularization algorithms for constrained image deblurring on graphics processors

The ability of the modern graphics processors to operate on large matrices in parallel can be exploited for solving constrained image deblurring problems in a short time. In particular, in this paper we propose the parallel implementation of two iterative regularization methods: the well known expectation maximization algorithm and a recent scaled gradient projection method. The main difference...

متن کامل

Efficient gradient projection methods for edge-preserving removal of Poisson noise

Several methods based on different image models have been proposed and developed for image denoising. Some of them, such as total variation (TV) and wavelet thresholding, are based on the assumption of additive Gaussian noise. Recently the TV approach has been extended to the case of Poisson noise, a model describing the effect of photon counting in applications such as emission tomography, mic...

متن کامل

Nonnegative least-squares image deblurring: improved gradient projection approaches

The least-squares approach to image deblurring leads to an ill-posed problem. The addition of the nonnegativity constraint, when appropriate, does not provide regularization, even if, as far as we know, a thorough investigation of the illposedness of the resulting constrained least-squares problem has still to be done. Iterative methods, converging to nonnegative least-squares solutions, have b...

متن کامل

A quasi-Newton projection method for nonnegatively constrained image deblurring

In this paper we present a quasi-Newton projection method for image deblurring. The mathematical problem is a constrained minimization problem, where the objective function is a regularization function and the constraint is the positivity of the solution. The regularization function is a sum of the Kullback-Leibler divergence, used to minimize the error in the presence of Poisson noise, and of ...

متن کامل

Gradient projection methods for image deblurring and denoising on graphics processors

Optimization-based approaches for image deblurring and denoising on Graphics Processing Units (GPU) are considered. In particular, a new GPU implementation of a recent gradient projection method for edge-preserving removal of Poisson noise is presented. The speedups over standard CPU implementations are evaluated on both synthetic data and astronomical and medical imaging problems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008